NEUTRON SPIN STRUCTURE IN THE RESONANCE REGION AND QUARK-HADRON DUALITY

P. SOLVIGNON FOR THE JEFFERSON LAB HALL A COLLABORATION

12000 Jefferson Avenue Newport News, VA 23606, USA E-mail: solvigno@jlab.org

The Thomas Jefferson National Accelerator Facility experiment E01-012 measured the $^3\mathrm{He}$ spin structure functions and virtual photon asymmetries in the resonance region in the range $1.0 < \mathrm{Q}^2 < 4.0 (\mathrm{GeV/c})^2$. Our data combined with existing deep inelastic data can be used to test quark-hadron duality on g_1 and A_1 for $^3\mathrm{He}$ and the neutron. The demonstration of duality for spin structure functions will enable the use of resonance data to study nucleon spin structure in the very high x_{bj} region. Preliminary results of $A_1^{^3\mathrm{He}}$ will be presented as well as an overview of the experiment and theoretical developments.

1. Introduction

In the 70's, Bloom and Gilman¹ observed that the nucleon resonances average on the high Q^2 scaling curve when an appropriate scaling variable is used. Since then Bloom-Gilman duality has been experimentally demonstrated for the spin independent structure function F_2 of the proton and the deuteron² and for the virtual photon asymmetry A_1 of the proton³.

Substantial efforts are ongoing in investigating quark-hadron duality in polarized structure functions both experimentally and theoretically. Carlson and Mukhopadhyay⁴ showed using perturbative QCD that the structure functions in the resonance region fall with increasing Q^2 at the same rate as in the deep inelastic region. The behavior of g_1 in the resonance region at high Q^2 is proportional to the helicity amplitude $G_+ = g_+/Q^3$ and can be written as follow:

$$g_1 = \frac{m_N^2}{\pi m_R \Sigma_R} G_+^2 = \frac{m_N^2}{\pi m_R \Sigma_R} \frac{g_+^2}{(m_R^2 - M_N^2)^3} (1 - x)^3$$
 (1)

2

where g_+ is a constant and $1/Q^2 \approx \frac{1-x}{m_R^2 - M_N^2}$ for $X \to 1$ and $W \approx M_R$. In the deep inelastic region, the photon is more likely to interact with the quark having the same helicity as the nucleon. This implies that g_1 and F_1 behave the same way as x approaches 1 and:

$$g_1(x) \propto (1-x)^3 \text{ as } x \to 1$$
 (2)

Finally they predicted A_1 tends to 1 as $x \to 1$ in the scaling region and the same is true for A_1 in the resonance region at high enough Q^2 considering resonant and non-resonant background.

Recently, Close and Melnitchouk⁵ studied three different conditions of SU(6) breaking applied in the resonance region under which predictions of the structure functions at large x lead to the same result as the parton model. They examined the cases where certain resonances are removed from the summation, (that is, suppression of spin- $\frac{3}{2}$, suppression of helicity- $\frac{3}{2}$ and suppression of symmetric wave function), and found that each scenario predicts $A_1^{n,p} \to 1$ as $x \to 1$.

Now that precise spin structure data in the deep inelastic region⁶ are available, data in the resonance region is needed (especially for the neutron) in order to test duality in the polarized case. Thus the goal of the experiment E01-012 was to produce such data in the moderate Q^2 region of 1.0 to $4.0({\rm GeV/c})^2$ where duality is expected to hold.

2. The E01-012 experiment

E01-012 ran successfully in January-February 2003 at Jefferson Lab in Hall A (see fig. 1). It was an inclusive experiment of longitudinally polarized electrons scattering on a longitudinally or transversely polarized ³He target⁷. Asymmetries and cross section differences are formed in order to extract the spin structure function g_1 and the virtual photon asymmetry A_1 in the resonance region up to $Q^2 = 4(\text{GeV/c})^2$:

$$g_1 = \frac{MQ^2 \nu}{4\alpha_e^2} \frac{E}{E'} \frac{1}{E + E'} \left[\Delta \sigma_{\parallel} + \tan(\frac{\theta}{2}) \Delta \sigma_{\perp} \right]$$
 (3)

$$A_{1} = \frac{A_{\parallel}}{D(1+\eta\xi)} - \frac{\eta A_{\perp}}{d(1+\eta\xi)}$$
 (4)

where A_{\parallel} (A_{\perp}) is the parallel (perpendicular) asymmetry corrected for data

acquisition deadtime, beam charge asymmetry, target and beam polarizations and nitrogen dilution. $\Delta \sigma_{\parallel(\perp)} = 2A_{\parallel(\perp)}\sigma_0$ with σ_0 the unpolarized cross section, and η , ξ , D and d are kinematic factors (see for example ⁶). To determine D and d, world data for $R(x,Q^2)$ will be used. However our data allows a direct extraction of g_1 and g_2 without the need of external input.

The beam polarization measured using a Moller polarimeter was on average $77(1 \pm 0.03)\%$. The polarization of the target was determined by two independents polarimetries⁷: NMR and EPR. From the preliminary analysis, the target polarization was $37(1 \pm 0.04)\%$ on average. Two almost identical spectrometers were used in a symmetric configuration in order to double our statistics and check our systematics. In order to select good scattered electrons, a gas cerenkov counter along with a two-layer electromagnetic calorimeter was used in the analysis. These allowed us to reduce the pion contamination by a factor better than 10^4 while keeping the electron efficiency above 99%.

Figure 1. Hall A floor plan. The electron beam is coming from the left.

3. Preliminary results

For our first pass analysis, $A_1^{^3\mathrm{He}}$ was extracted from the asymmetries. $R(x,Q^2)$ was assumed constant with a value of 0.18. No radiative corrections are applied and the error bars are statistical only. Figure 2 shows $A_1^{^3\mathrm{He}}$ at four different Q^2 values in function of the Nachtmann scaling vari-

4

able $\xi = 2x/(1+\sqrt{1+\frac{4M^2x^2}{Q^2}})$. The position of the $\Delta(1232)$ resonance is indicated in each plot.

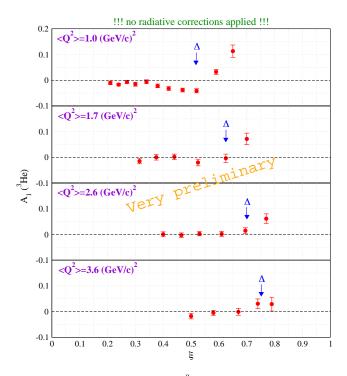


Figure 2. Preliminary result of A₁³He. See text for discussions.

The most important feature is the negative contribution of the $\Delta(1232)$ resonance at low Q^2 . It is reported ^{4,5} that quark-hadron duality is not expected to apply in the Δ region at this low Q^2 . However at higher Q^2 , $A_1^{^3\text{He}}$ in the $\Delta(1232)$ increases due to the fall off of the resonance and the rising background. At large ξ , our data tend to follow the same pattern as the DIS world data⁸ and indicate the validity of duality.

4. Summary

E01-012 resonance data cover the region of 0.2 < x < 0.90 (see fig. 3). At x < 0.60 where DIS data are available, we will provide a precision test of quark-hadron duality predictions for neutron spin structure functions. Morever, if duality is confirmed, E01-012 will provide the first precise measure-

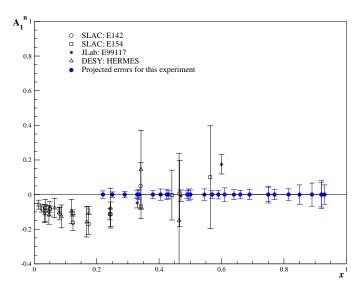


Figure 3. A_1^n results measured in the deep inelastic region using polarized ³He targets and E01-012 projected statistical errors are shown.

ment of g_1^n and A_1^n in the range 0.60 < x < 0.90.

Our data will also be used to extract moments of the structure functions, for example: the extended GDH sum, d₂ matrix element and the Burkhardt-Cottingham sum rule.

Acknowledgments

This work was supported by DOE contract DE-AC05-84ER40150 under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility.

References

- 1. E. D. Bloom and F. J. Gilman, Phys. Rev. Lett. 25, 1140 (1970).
- 2. I. Niculescu et al., Phys. Rev. Lett. 85, 1182 (2000); 85, 1186 (2000).
- 3. A. Airapetian et al., Phys. Rev. Lett. 90, 092002 (2003).
- 4. C. E. Carlson and N. C. Mukhopadhyay, Phys. Rev. D 58, 094029 (1998).
- 5. F. E. Close and W. Melnitchouk, Phys. Rev. C 68, 035210 (2003).
- 6. X. Zheng et al., Phys. Rev. Lett. 92, 012004 (2004).
- 7. K. Slifer, in Proceedings of the 2nd International Symposium on the GDH Sum Rule and Spin Structure of the Nucleon, 1st ed., edited by M. Anghinolfi, M. Battaglieri and R. De Vita (World Scientific, New Jersey, 2003).
- 8. X. Zheng et al., to be published in Phys. Rev. C.